Dr. Barrett,

Today I re-read your review of my practice and person titled “A Skeptical Look at David Steenblock, D.O.” and see that you have not updated it much since it was originally posted. I think if you had checked out the many rebuttal statements and articles on the Web such as Goliath v. David (2011) you would have corrected many false and misleading entries on Quackwatch concerning me. I am writing you now in hopes you will remove or at least modify your many negative articles to correct these deficiencies.

Let me know share just a few of the issues that I feel were misrepresented on Quackwatch, sometimes by innuendo as opposed to direct statements.

One example you railed against was my use of biomeridian testing back (which I did around 1993). I did this for investigational purposes only and abandoned this for a variety of reasons (well before 2009 when you located an old entry on it on one of my websites). Actually, I carried out an unpublished double blind study on it (there was also another double blind study that was published - see below) in which it was employed to determine food allergies. I found it produced reliable results that were comparable to and even bested conventional allergy tests.

You had this to say about biomeridian testing in “A Skeptical Look at David A. Steenblock, D.O.”:

Proponents of such devices claim that they measure disturbances in the body's flow of “electro-magnetic energy” along “acupuncture meridians.” Actually, they are little more than fancy galvanometers that measure electrical resistance of the patient's skin when touched by a probe. The device emits a tiny direct electric current that flows through a wire from the device to a metallic cylinder that the patient holds in one hand. A second wire is connected from the device to a probe, which the operator touches to “acupuncture points” on the patient's other hand or a foot. This completes a low-voltage circuit and the device registers the flow of current. The information is then relayed to a computer screen that provides an interpretation of the findings and suggests products the patient can take. The Biomeridian and similar devices provide no useful information about the patient's diagnosis or treatment [5].

Many doctors have asked me how it is you and other skeptics can be so certain about the worthlessness of biomeridian or bioenergetic testing in the absence of careful experimentation and without apparently reviewing the double blind studies whose findings support its effectiveness in determination of food allergies, e.g., Ali M, 'Correlation of IgE Antibodies with Specificity for Pollen and Mold Allergy with Changes in Electrodermal Skin Responses Following Exposure to Allergens’, Am J Clin Pathology 1989; 91(3):253-259, Bernstein M, 'Double-blind Food Challenge in the Diagnosis of Food Sensitivity in the Adult', J Clin Immunology 1974; 54:165, A double-blind, randomized, controlled investigation of electrodermal testing in the diagnosis of allergies (J Altern Complement Med. 1997 Fall;3(3):241-8).

In an article you wrote titled “Quack “Electrodiagnostic” Devices” you cited as scientific evidence against it one double blind study in which “British researchers compared its results with a Vegatext device to those of conventional skin-prick testing in 30 volunteers, half of whom had previously reacted positively for allergy to cat dander or house dust mite. Each participant was tested with 6 items by each of 3 operators in 3 separate sessions, a total of 54 tests per participant. The researchers concluded that Vegatesting does not correlate with skin prick testing and so should not be used to diagnose these allergies.” You can access this study by clicking this link: http://bit.ly/Le2Urs. The problem with this – aside from the inference
that a single study is sufficient to invalidate bioelectric testing – is the fact we really do not know if the machines used were operating properly and had been calibrated, nor do we really know if the operators were properly trained in their use or violated testing protocols.

It should be noted that conventional skin testing for food allergies is widely recognized as being almost worthless and yet continues to be utilized by allergists since insurance companies pay for this. Blood testing for IgE and IgG reactivity is the most accurate but are more expensive. Since the average general practitioner can order these blood tests and thus cut out the involvement of allergists, the allergists have exerted considerable pressure on insurance companies to not pay for these tests. This does two things: Puts more money into the allergist’s pocketbooks and decreases the expense to the insurance companies. Even though biomeridian and Voll electrodermal testing is far cheaper than skin testing and blood testing, allergists will continue to lobby to keep them banned and by so doing help insure that they can continue to make money on pretty much worthless allergy testing.

At present thousands of physicians and other kinds of health care practitioners use electrodermal testing to help people. Are all of these thousands of providers and their patients delusional? In-a-way you seem to have set himself up as the final judge of what works and what doesn’t with little or no background in the use of these devices from either a practical or theoretical point of view, with your opinions bolstered by findings in a single double blind study (Again, confirmatory studies were not mentioned or reviewed though they exist in the literature including PubMed). If the use of all medical devices were held to this standard – this kind of evaluation -- one can’t help but wonder how many would be outright banned?

ORAL CHALLENGE TESTING FOR FOOD ALLERGIES: ESCHEWED BY U.S. ALLERGISTS BUT APPROVED IN JAPAN AND OTHER COUNTRIES

Many doctors feel the most reliable food allergy test is the oral challenge test. This involves patients consuming a small quantity of various foods while being monitored for any untoward reactions by a physician experienced in dealing with allergic reactions including anaphylaxis. This kind of testing is not something most allergists in the US do but which is approved in countries such as Japan. In a paper which appeared in *Allergology International* (Official Journal of the Japanese Society of Allergology) in December 2009 it was noted that “After the release of the guideline, oral food challenge tests were approved as a medical examination on hospital admission by the national health insurance system in 2006, and the tests at outpatient clinics were also approved in 2008”. The paper in its entirety can be accessed by clicking this link: http://ai.jsaweb.jp/pdf/058040475.pdf

Popular articles on the subject include “Double-Blind Placebo-Controlled Food Challenge” at http://bit.ly/Lp4Q2d and “Have a Food Allergy? It’s Time to Recheck” at http://nyti.ms/gNGyPW
Your “skeptical objections” to my work also included comments on my use of hyperbaric oxygen and stem cells:

The treatments that seem to interest Steenblock most are hyperbaric oxygen therapy and stem cell therapy. According to an article on the Stroke Doctor Web site:

Strokes are caused by a lack of oxygen to a part of the brain. Long term effects are caused by the continued lack of oxygen, the swelling of brain tissue and the accumulation of calcium within the damaged nerve cells. Dr. Steenblock’s neuro-rehab program is designed to bring oxygen back to these starved cells, reduce swelling, and provide the nutrients needed to help the cells remove their waste and restore normal metabolic function [6].

 history. However, there is no scientific evidence that increasing oxygen delivery to the brain after an acute episode is over can stimulate cells to regenerate.

The website quote you employed says nothing about the use of hyperbaric oxygen to regenerate cells and instead focuses on the use of HBOT to reduce swelling and promote a resumption of normal metabolic function, yet you wrote as though I claimed HBOT “can stimulate cells to regenerate”. Interestingly, the Wikipedia entry for “Regeneration (biology)” states, “In biology, regeneration is the process of renewal, restoration, and growth that makes genomes, cells, organs, organisms, and ecosystems resilient to natural fluctuations or events that cause disturbance or damage” and “Regenerative strategies include the rearrangement of pre-existing tissue, the use of adult somatic stem cells and the dedifferentiation and/or transdifferentiation of cells, and more than one mode can operate in different tissues of the same animal. All these strategies result in the re-establishment of appropriate tissue polarity, structure and form.” This definition is an exact description of what hyperbaric oxygen does for stroke patients. The National Library of Medicine lists over 500 papers with respect to hyperbaric oxygen and regeneration and nine papers using the terms in combination with brain damage from ischemia (the cause of most strokes).

While the use of HBOT for chronic stroke is controversial since there have not been sufficient double blind studies to reach conclusions concerning efficacy, it certainly cannot be dismissed willy-nilly as being ineffective. This perspective is reflected in an Agency for Healthcare Research and Quality, U.S. Department of Health and Human Services document titled “Hyperbaric Oxygen Therapy for Brain Injury, Cerebral Palsy, and Stroke” (Evidence Report/Technology Assessment No. 85): “Evidence from well-conducted clinical studies is limited. The balance of benefits and harms of HBOT for brain injury, cerebral palsy, or stroke has not been adequately studied. Future research of HBOT should include dose-ranging and safety studies to establish the optimum course of HBOT to evaluate in outcome studies.” From the Summary section (page 5)

I have been doing HBOT for various neurologic conditions since 1989, and have seen HBOT effect clinically significant improvements in a large enough population of patients to compel my continued reliance on it right on up to the present (2016). It is not, however, a standalone or primary therapy for stroke in my clinic but is used as part of a comprehensive treatment approach.

The real question for any physician who has watched chronic stroke patients regain their lost functions during a 6-8 week course of daily hyperbaric oxygen is why would they deny what they have seen with their own eyes? Are these patients delusional and their restored ability to walk, speak or
see due to “wishful thinking”?! Would not the more prudent recourse for a doctor be to listen, watch and carefully observe and then use what works to help his patients? I suspect most people who reason thus out would likely say to run with what is safe and works and ignore skeptics, critics and naysayers.

I would be remiss to leave the topic of HBOT and stroke behind with sharing some links and these comments:

Late Treatment of Severe Brain Injury (Journal of American Physicians and Surgeons, Volume 10, Number 2, Summer 2005)

BRIEF REVIEW OF HYPERBARIC OXYGEN FOR STROKE REHABILITATION by David A. Steenblock, D.O.

Summary of patient responses at Dr. Steenblock's clinic presented as a Poster Session titled "Improved therapy for Rehabilitation of Stroke" given by Dr. Steenblock at the National Stroke Association Ninth Annual Stroke Rehabilitation Conference

A Cochrane review of a number of studies with HBO and acute stroke did not come to any real conclusion **Cochrane Database Syst Rev.** 2014 Nov 12;11:CD004954. doi: 10.1002/14651858.CD004954.pub3.

Your lack of understanding of the ischemic penumbra and how oxygen and growth factors are useful for reversing the ischemia of the area immediately surrounding the central core of dead brain tissue is understandable since most neurologists even don’t understand this because they have not studied the phenomenon. Never-the-less it is a true phenomenon and was first published in 1981 by Astrup

Thresholds in cerebral ischemia - the ischemic penumbra.

Astrup J, Siesjö BK, Symon L.
PMID: 6272455

Unfortunately, to-date there has been little research done on exploiting this concept for stroke rehabilitation other than what I have done (which has not been published). Frankly, rather than publish this type of data, I would rather keep creating ever better treatments as opposed to investing what little free time I have in trying to win you and others over with scientific papers which would likely be outmoded by the time they get posted or into print.

I should add that one very glaring problem among mainstream docs working with HBOT is that most appear to lack a comprehensive understanding of the exact sequence and full nature of the physiologic and biochemical events that take place in the brains of acute stroke patients and how to carry out treatment and studies to gel with this. To help illustrate this, some years ago I attended a meeting of European physicians who were studying the use of HBO for acute stroke and was flabbergasted at the entire group’s lack of knowledge and insight. Their plan was to give one treatment per day for 10 days for one group of stroke patients and compare that group with another...
that sat in an unpressurized HBO unit for the same number of hours and days, and then to compare the patients at 6 months in terms of their physical disabilities. I tried to point out the fact that one should first understand the interplay of mechanisms operating during the first 24 hours of damage and strive to synch treatments with these (Something that requires testing and determining what is transpiring at many levels at specific intervals, something I worked out over time), but for some reason they and others I shared this with later on didn't seem able to grasp what I was trying so hard to communicate. The fact is, ischemia of the brain causes the affected part of the brain to swell which causes compression of the surrounding blood vessels and with this a further diminution of blood flow to the area which gradually increases ischemia causing a gradual increase in the swelling of the entire affected area (A self-fueling detrimental physiologic loop). This explains cases like former President Nixon who had a stroke and was alert and able to give a victory sign as he was being wheeled into Walter Reed hospital for care only to lapse into a coma and die 72 hours after stroke onset. This was most likely due to the gradual swelling of the brain finally the pressure was so great that coma developed and compressed his brain stem shutting off his respiratory drive. Even back then I believe monkey studies had been done in brain trauma showing that if the skulls of the monkeys were removed just after the brain trauma most of them survived, but the ones that did not have their skull caps removed all died.

This body of information and evidence will not satisfy hard core skeptics and isn't expected to. The off-label use of HBOT by me and other physicians for chronic stroke and other neurologic maladies is part of a venerable tradition in medicine; namely, the kind of in-office therapeutic experimentation with safe natural therapies that history shows has lead to a great many novel insights and discoveries. Remove or seriously curtail this sort of hands-on, informal clinical research and medical progress (especially suffering patients) will suffer for it.

You also take exception to my work with stem cells:

Steenblock's sites list more than 100 diseases that they claim stem cell transplantation can treat. Stem cell therapy is certainly a promising area for research [7,8]. Stem cells have the ability to give rise to many specialized cells in an organism. Certain types of stem cells are already used to restore blood-forming and immune system function after high-dose chemotherapy for some types of cancer, and several other restorative uses have been demonstrated [9]. The broadest potential application is the generation of cells and tissues that could be used to repair or replace damaged organs. If scientists can learn how to control stem cell conversion into new, functionally mature cells, doctors might be able to cure many diseases for which therapy is currently inadequate. However, Steenblock's claims go way beyond what is likely and should be regarded with great skepticism.

There was an entry on Stemcelltherapies.org (a website that I operated which is currently offline that listed about 100 diseases and medical conditions “treatable by Stem Cell Transplantation. Compilation from The National Donor Program, 2002 and www.stemcelltherapies.org, 2004. Most of the entries come from the National Donor Program list.

If the “claims” you take exception to is that stem cells can treat or potentially treat over 100 diseases and medical conditions then you disagreement is with the compilation of conditions by the National Donor Program. This and scores of published papers on the safety and therapeutic utility of bone marrow and umbilical cord stem cells including bone marrow aspirate in a wide variety of diseases and medical conditions.
My involvement with adult (nonembryonic) stem cells dates back to 1969 when I spent time working in the Department of Hematology at the University of Washington where much of the original work on bone marrow transplants was done (The director of the program when I was there was Edward Donnall “Don” Thomas, MD). Since 2000 my stem cell work has had two primary clinical facets:

(1) I worked as a consultant and adviser to clinics in Mexico and elsewhere that administer pure umbilical cord stem cells to patients with a variety of neurologic, ocular and other challenges. One of the clinics I served was the International Spinal Cord Regeneration Center (ISCRC) in Tijuana, Mexico whose medical director was Fernando Ramirez Del Rio, MD (He retired over four years ago). During the course of my involvement with ISCRC I was part of an open pilot study (2004) involving the use of pure umbilical cord stem cells in eight children with cerebral palsy. This study was written up and appeared in the journal Medical Hypotheses & Journal in 2005 (Click to access: http://bit.ly/M7aKWR). In 2005 I co-authored a book on umbilical cord stem cell therapy that focused on patient case histories gleaned from Dr Ramirez’s stem cell work titled “Umbilical Cord Stem Cell Therapy: The Gift of Healing from Healthy Newborns”

My consultancy relationship with ISCRC ended in 2010. Presently I serve as a medical and technical consultant to stem cell-focused treatment programs both here in the USA and around the world.

(2) I was one of the first physicians in the US to begin systematically harvesting patients own stem cell-rich bone marrow (Bone marrow aspirate concentrate or BMAC) and treating them with this for a variety of chronic health conditions. Since I do not process the bone marrow in ways that violate FDA rules governing this (“minimum manipulation”) my approach is fully legal. This has been confirmed in writing by many attorneys I have consulted and by the FDA in an email to one of these lawyers.

As you might expect I have accumulated a great deal of case history as well as testimonial information and data on patient responses to both umbilical cord stem cell therapy (done abroad) and BMAC done in my clinic in San Clemente, California (Formerly located in Mission Viejo). Critics have dismissed this sort of evidence as worthless or close to it. However, this does not square at all – not even with what many quackbusters have written and said. In an article titled “Science vs. Alternativism” posted on Quackwatch, writer Gregory L. Smith, MD states that:

“Testimonials can be great places to start looking for answers, but they should not be considered the end of the journey. Many scientific discoveries start with an observation that leads to a hypothesis that eventually can be tested with a randomized controlled trial”. My own pioneering work with hyperbaric oxygen is one such example since it now is moving into double blind clinical trials for treating stroke and traumatic brain injury.

Despite the limitations of anecdotal evidence, there has been so much of it accrued by me with respect to the use of umbilical cord stem cells and BMAC (for various conditions) that it would be injudicious for me not to share this and encourage suffering people to avail themselves of it. If my factual reporting of cases (claims) “goes way beyond what is likely” (to paraphrase you) then perhaps you or one of your trusted associates or colleagues should considering coming and working alongside me to determine for yourself whether patient outcomes exceed what is likely. I would actually welcome this and am confident you would find yourself readily admitting that what you have characterized as unlikely is actually happening my clinic.
One of the more interesting and paradoxical things that seems to crop up in many skeptical reviews and critical articles including your own are statements that are inaccurate or which otherwise misrepresent the subject being discussed, sometimes by virtue of the writer’s approaching their “target” almost in debate class fashion where winning counts but at the expense of truth or fairness.

In writing about the paper mentioned on the preceding page concerning the findings of an open pilot study involving eight (8) children given injections of pure cord blood stem cells, you wrote:

“This report states that parents completed questionnaires before the treatment and at 1, 3 and 6 months afterwards and that the children's own therapists submitted evaluations to SRI for analysis. It further states that all eight children showed clinically significant improvement, but it does not tabulate the outside therapists’ observations. Although its findings are interesting, the report should not be promoted as evidence of effectiveness. At the very least, a study of this type should include complete physical evaluations before and afterwards by independent observers. It is also important to know whether any improvement could have occurred as a result of other treatment or the natural history of the ailment. That would require a comparison between treated and untreated children.”

While many of your comments are certainly valid it would have been nice had he quoted from the paper itself in which the authors including Dr. Steenblock admit the study's limitations and the need for further research:

From the abstract:

“According to parent tendered observational re-ports, none of the children had graft versus host reactions. Eight out of eight children showed some improvement in mobility and/or cognitive function. Six children (75%) were rated as improving in muscle tone, hip movement, leg movement, rolling to the side, balancing while sitting and balancing while standing by the end of the six month follow up. Further research, correlating parent ratings with tomography studies and physical therapy evaluations, seems warranted”.

And from page 6 col. 1:

“Further, more rigorous research into the promise and utility of human umbilical cord stem cell use in addressing various neurologic disorders (and the mechanism or mechanisms underlying efficacy) including cerebral palsy, seems warranted.”

While not constituting “hard” evidence of causation, there were some highly compelling clinical improvements in two (2) of the children that any review or news article should mention:

“During the study one aphasic child started talking and one child who had been blind from birth due to optic nerve atrophy was able to see by month six post-treatment. Interestingly, an ophthalmologist who saw the child many months prior to his cord blood stem cell treatment reported that the child would never see. Four months after his injection he tracked a ball rolling across the living room of his family home. Two weeks later a second ophthalmologist at a major Florida university eye institute reported that the child could see and recommended glasses. These improvements were faithfully reported by the parents.”
In addition, there was this sentence which signals the fact myself and the other authors readily acknowledged the tentativeness of this study:

“The main objective of this pilot study was to begin quantifying results, especially in terms of safety.”

What is interesting and also rather hypocritical is that some stem cells experts back in 2003-6 basically called Dr. Ramirez's use of pure cord blood stem cells to treat cerebral palsy in children just so much “smoke and mirrors”, and then turned around and pursued funding to test the use of cord blood or cord blood derived stem cells in animals and humans. Some even sent patients to Dr. Ramirez on the Q.T. during the same period of time they were criticizing him.

Very telling is a January 8, 2012 60 Minutes investigative segment titled Stem Cell Fraud: A 60 Minutes investigation that focused on a doctor who allegedly sold umbilical cord stem cells to a couple in Florida whose son has cerebral palsy. At one point the segment's lead investigative reporter Scott Pelly brought up stem cell treatment offerings on the Internet with stem cell expert Joanne Kurtzber, MD (Duke University):

Scott Pelley: You know, I wonder how often it happens that you have to tell a patient, 'I'm sorry. There's nothing we can do.' And then they come back to you two days later and say, 'Well, I see all these cures on the Internet.'

Dr. Joanne Kurtzberg: I get many of those calls and emails and, and, see many of those patients. But it's very dishonest to mislead people when there's nothin' you can do.

“Nothin' you can do” seems to fly in the face of what appears on the Web concerning Dr. Kurtzberg’s work with cord blood and cord blood stem cells for cerebral palsy:

- **Cord blood: A weapon against cerebral palsy?** - *April 07, 2008* | Erin Cline Davis | Special to The Times

 “Kurtzberg says that of the children she has treated so far, only Dallas and one other child have made such dramatic improvements.”

- **Neurological Disorders: A Focus On Cord Blood Stem Cells As A Potential Treatment Option** - *23 Jun 2008 - 2:00 PDT*

 “This research also lends support for the pioneering clinical work at Duke University, focused on evaluating the impact of autologous cord blood infusions in children diagnosed with cerebral palsy. Dr. Joanne Kurtzberg, a professor of pediatrics and pathology and director of Duke's Pediatric Blood and Marrow Transplant Program, is infusing the child's cord blood stem cells back into the body in an effort to facilitate repair of brain tissue damaged by perinatal hypoxic (oxygen-deprived) events. To date, more than 20 children have participated in the experimental treatment.”

- **Cord Blood Reverses Cerebral Palsy in Colorado Girl** – *Nov. 9, 2009*
“The Levines were in luck: Dr. Joanne Kurtzberg, a professor of pediatrics and pathology at Duke University, was conducting a study where children with cerebral palsy were injected with their own cord blood cells.”

- Kurtzberg and Team Move Forward With Cerebral Palsy Cord Blood Study - 2010

It would seem that work with cord blood stem cells done outside a particular venue constitutes “smoke and mirrors” (A scam) while that done in proscribed settings (university labs, hospitals and research clinics and centers) is genuine and bona fide.

Maybe some of the things being so quickly dismissed are legitimate discoveries; the kind that medicine should welcome, once did, but now does not – at least in some quarters (This at least is how many mainstream doctors and researchers react to anything discovered outside their purview or control or that seems to fly in the face of accepted “truths” or “established facts”).

Returning to “A Skeptical Look…” your critical examination of me and my work also included this concerning his early work with bone marrow aspirate:

Near the end of 2006, Steenbock began administering stem cell therapy himself by withdrawing fluid from the bone marrow and injecting it back to the patient intravenously. In a 2007 lecture delivered in the United Kingdom, he stated that he had originated this method and that any doctor could use it [14]. The StemCell.md site has an interesting testimonial for "Emily," a 16-year-old girl who underwent this procedure.

- Emily had right-sided disability and spasticity since birth.
- She was treated by removing 300 milliliters of bone marrow from her hip and giving it back to her intravenously.
- Five hours after the raw bone marrow infusion, she was able to move her right toe for the first time in her life.
- That evening, she was able to walk, stepping heel to toe on her right foot.
- By the next day, she was able to straighten out and use her right arm and wrist for the first time.
- Within three weeks, she was also able to move her fingers on her right hand and hold a cup for the first time.
- She has continued to improve on her walking rhythm and is also running [15].

In an videotaped interview recorded the day after her stem cell treatment, Emily and her mother give a glowing report [16]. Her appearance, however, is unpersuasive. Although they talk about how she can unclench her right hand, straighten her right elbow, and raise her right arm—all of which they say she could never do before the treatment—she demonstrates none of this during the recording. Moreover, the idea that transfused stem cells are responsible for such rapid improvements is questionable. If cells are actually removed from the marrow and injected intravenously into a person, they would simply not gravitate toward and fix damaged organs in a single day or so. Many, in fact, would be filtered out by the spleen, circulate back to the marrow, and/or simply die. The Web site does not say when Emily's treatment took place, but the video was uploaded to YouTube on August 13, 2009. It seems probable to me that her testimonial is an expression of wishful thinking.
Payne readily acknowledges that stem cells could not be directly responsible for an improvement within hours, but he speculates about other mechanisms [17].

Unfortunately, the individual who conducted and taped the interview you reviewed was a web designer and not a reporter or professional videographer (The interview was posted without my having been given a chance to review it. The staff member in question subsequently left my employ). While focusing on eliciting answers to questions he failed to have Emily get up and demonstrate her new found and improved bodily functions. The simple fact is both Emily and her mother were not the victims of wishful thinking. How can having your toes start to work for the first time in 17 years constitute wishful thinking, anyway?

About one year after the videotaped interview in question was done Emily returned to my clinic for a second bone marrow aspirate concentrate (BMAC) treatment and was interviewed by me. During the course of my 8m: 45s exchange Emily discussed and illustrated the type and degree of improvements she had experienced since having her (first) BMAC. This interview can be accessed by clicking this link: https://www.youtube.com/watch?v=zyGsmTfKMZc

You then continued your look at my professional history with a section titled “Disciplinary Actions” which kicks off with this salient comment:

“Steenblock has been disciplined by his state licensing board three times and is now serving 5 years' probation.”

Details follow but nothing is said about various articles published beginning in 2005 that bring into question the fairness of these decisions and even supply missing information and mitigating factors. Many of these readily turn up on Google searches going back many years and, given your seeming penchant for scouring the Web for anything negative about me and others involved in integrative medicine, I can't help but think you turned up and read or skinned through many of them. (Admittedly, some were lost when Geocities and other websites they were posted to went out of business). You need not go a quest to find this body of information, as all this information has been distilled down in an article I shared earlier in this e-communication titled “Goliath v. David”: http://bit.ly/JCUKuA

At the end of “A Skeptical Look…” you offered a bottom line concerning my person and work which ends with “This article summarizes why I am skeptical of his offerings”.

Frankly, I have good cause to be skeptical of you and your article on me as well as much of what you have posted on Quackwatch down through the years. Many who have looked closely at QW’s content have argued that technical errors, lack of objectivity, incomplete information and data, unsupported opinions and innuendo abound. Among them is Dr. Joel M. Kaufman (Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, PA) who has posted his thoughts on various web sites including http://bit.ly/MddeCt.

Readers might want to ask themselves if Dr. Barrett’s articles are really protecting medical consumers or misinforming and even misleading them?

The fact I have pointed out many mistaken and skewed entries in your “A Skeptical Look at David Steenblock, D.O.” diatribe alone underscores what Dr. Kaufman stated (and what countless others have pointed out with examples).
Naturally, I welcome your response and will get back to you as quickly as possible.

Most Sincerely,

David A. Steenblock, M.S., D.O.